About the Project

Our Client came with the idea for the project in 2018, to build unique software for Football Leagues that facilitates a simple and compliant football transfers for individual players through blockchain. Their idea was to optimize the process of coordinating with teams and bring more efficient, transparency and confidence among Football Players.

Technology

  • Hyperledger
  • MySQL
  • ReactJS

“Our AI Team worked along with Blockchain experts to achieve this solution, where information can be exchanged securely, communication is optimized among players and transfers are performed with transparency.”

Requirements

  • SaaS based Platform for Empowering Football Professionals, Leagues & Transfers
  • Block Chain based Secure Communication
  • Seamless Conveyance from One Club to Another
  • Transparency & Immutability of Data
  • Provenance & Redundancy
  • AI Driven Predictive Analytics for Improved Performance
  • High Security for Interactions Among Leagues
  • Mobile App for the Platform

    Solutions

    • SaaS based Platform for Enabling Ease in Football Transfers
    • Rapid Price Discovery & Secure Football Contracts
    • Ability to Interact Securely with Clubs & Agents
    • Mobile App for Communication between Players and Clubs Members
    • Authentication of Bidding Interest from certified clubs
    • Real time updates of transfer price and status for Clubs
    • Secure and accessible storage of verified contracts
    • Scope for Agents to manage transfer processes
    • Dashboard for Detailed Transfer Status for Players
    • Digital Signature for Contracts
    • Confirmation of Regulatory Compliance

    SIMILAR STORIES

    SEE ALL
    IoT & AI Based Software for CNC Machines
    image/svg+xml Print 2018-12-05T14:17:02+05:30 2018-12-05T14:17:02+05:30 2018-12-05T14:17:02+05:30 Adobe Illustrator CC 2015 (Windows) 256 256 JPEG /9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE 1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp 0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo +DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FXYq7FXYq7FXYq7 FXYq7FXYq7FXYq7FXYq7FXYq8h/5ygu/MVt+XKnSWljtZLtI9VeGoP1co9A5G4RpOIb6B3zI0wHF u4usJ4Nnyx5Y87ea/K92t1oWpz2TqatGjExP7SRNWNx/rDM6UBLm62GSUeRfXP5O/nTpXnrTvq16 0Vl5lt1JubIGiyoor60PL9n+Za1X5UOa/LhMT5O0wagTG/N59+df/ORc1vcy+XvJF0oaOqX+tR0b 4uhjtjuNu8n/AAPjl2HT9ZNGo1XSL53n1fVp7/8ASE97PLf15fXHldpq+PqE8vxzLoOBxG7e0/lB /wA5G6zpd/b6P5xumv8ARpmEaanMS9xbE7BnfdpY6/a5fEOte2Y2XTg7jm5eDVEGpcnvXn781fKv k7y8mr3Nyl3Jdx89Ks4HVnuiRVShFQI9936D3NAcWGIyNOdlzRgLfHXnf8y/OHnK+kuNZv5GtyxM OnxsUtohXZVjBpt/M1WPc5sYYxHk6nJllM7oLyt5381eVr1LvQtSms3U1aJWJhf2kiNUcfMYZQEu aIZJR5F9m/lH+Zll5+8sLfhVg1W1Ih1SzU1CSUqHSu/CQbr9I3pmuy4+Au2wZuON9Wb5U3OxV2Ku xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxVbJHHJG0cih43BDowBBB6gg4q8Q/Of /nHrTdbs5Na8n2kVlrcQLTafEFihulA/ZXZEl8CKBu+++ZOHORseTh59KDvHm+WL2yv9OvJLS9gl tLyAlJYJVaORD3DK1CMzgbdYQQm/k3yL5m846qmnaFZtO5I9e4IIghU/tyydFH4nsCcE5iIss8eM zNB9YaN/zjt+Xtn5OOgX1mt7eTqGutYIC3XrD9qF9/TVeyDan2uW+YB1Ert2cdLARovmT8y/yr8x +Q9We3vYmn0uRv8AQdVRT6MqncBjuEkA6oT8qjfM3HlEg67LhMDvyYcizTOkaBpHNEjQVY7nYKPm csan0R+SH/OPEzTR+YvO9nwiWj6fo0w+JmBr6lyh6L4Rnr+0KbHDzajpFz9Ppeslf/nIX8j09NfN PlDTQnpimr6baIFHEDa4jiTw6SBR/lfzHHBm6FdVp/4oh876fqep6bcfWNPu5rK4H+7YJGifY16q QeozLIBcEEjk+7/yx1PWtU8gaFqGtAjU7m0R52YUZ6/YkI8ZEox+eavIAJGndYSTEE82T5Bsdirs VdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVSvWfKvljXOB1nSbPUTHT02uoI 5itDXYupIyQkRyLGUInmEZYafp+n2y2thbRWlqn2IIEWKMfJUAAwE2kADkiMCVO4tre5geC5iSeC QUkikUOjDwKtUHFSEr0nyb5R0e4a50nRbGwuH+1NbW0UTn25IoNPbJGZPMsI44jkE4yLN2KpFe+Q vJF9qA1G80DT7i/Dc/rMlrC0hbryZitWPzyQnIbWwOOJN0E9AAFB0yLN2KuxV2KuxV2KuxV2KuxV 2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV49/wA5IfmV5g8naLpdpoUwtb3V 5JuV2FDOkVuE5BOQKgsZV3+7MjT4xI7uJqspgBXV87f8rr/NX/qZbz/gl/5pzM8GHc4H5ife7/ld f5q/9TLef8Ev/NOPgw7l/MT73f8AK6/zV/6mW8/4Jf8AmnHwYdy/mJ97O/yX/O3z5ceftN0jWtTf UtN1ST6tJHccOSOyn03jegIPKgp0PzocqzYY8Nhv0+olxAE2C+r8wHZuxV2KuxV2KuxV2KuxV2Ku xV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KvmT/AJzAueWreWrap/dwXUlP2f3jxrt7 /u98zdJyLrtcdwxb/nHf8ufLXnXVtYi8wWz3NrZQRNEEleKkkjkb8CpOynJ6jIYgU16XEJk29z/6 Fq/KL/q1zf8ASVcf815jfmJuZ+Ux9zEfza/Ij8uvL/5d6zrOj2MsGo2UcUkEpnmkArMivVGYqaoS MsxZ5GQBas+mhGBIeB/lnc/VvzF8sTEhVXVbIOx3orToG/A5lZPpPucLCfWPe++81Tu3Yq7FXYq7 FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXyh/zlvccvPulW/++9LR 612+O4mHT/YZn6X6T73Wa0+oe5kH/OHtsOPmq5IFSbGJD3FPXZv+NchqzyZ6Ec30fmG7BiH5vW31 j8r/ADPHQnjp08nw9f3Sep93w75Zi+oNWceg+58P+W7n6r5i0u5qV9C7gk5DcjhKrV/DNnIbOmga Ifofmod87FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq+PP +co7gS/mnJGKf6PY20ZoanflJv8A8Hmw030uq1h9b0j/AJxEtwvlbXrnasl8kZ23/dwg7n/nplOq 5hyNCPSXveYrmpJ55tvrXknzBbceXr6beR8a0rzgdaV+nJQPqDDILifc/PtWZGDKSrKaqw2II7jN s6N+jlvMs0EcyghZVVwD1owrmnd+F+KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2K uxV2KuxV2KuxV2KuxV8Uf85F3In/ADg10AgrCLWJSP8AJtIi1f8AZE5stOPQHUao/vC9w/5xQt/S /LW6k/3/AKpO/SnSGBPp+xmNqvq+DmaIej4vZ8xnLUNQtvrVhc21AfXieOh6HmpXf78IQRYfnNm3 dC/QnyfcC58paJcDYTWFrJStftQqevfrmpnzLvYH0hN8iydirsVdirsVdirsVdirsVdirsVdirsV dirsVdirsVdirsVdirsVdirsVdirsVdir4U/Oq5+s/mr5mkrXjeNFUin90ojp9HHNphHoDpdQfWX 0x/zjPbel+UmnSUI+sT3Um/Q0naPb2+DMLUfW7HSD92HqeUOS7FX516zbi21i+txSkNxLHsKD4XI 2H0ZtxydDIbvun8qLkXH5Z+VpBQ8dLtY9un7qJY/+Nd81mX6i7nCfQPcyvK212KuxV2KuxV2KuxV 2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KvgH8xrk3P5g+Zp96SaresvLqF+sPx H0DNrj+ke50eU+s+99f/AJCW31f8ovLkfHjyhlkpWv8Ae3Eklfp5VzX5z6y7XTD92Gf5U3uxV+f/ AOYlubfz/wCZYDU+nqt6oJFKgXD0NPcZtcf0j3Ojyj1H3vsL8hrn6x+UflySobjBJHUbf3U8kdPo 45r849Zdrpj+7DPsqb3Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq 7FXYq/O3Xbg3Ot6hcHYzXM0lK1+1IT179c28eToZHcvuf8p7b6v+WXleOgHLTLWSg/4tiEn/ABtm sy/UXc4R6B7mV5W2uxV8J/nRbfVvzU8zR0I5Xry/F1/egSf8bbZtMJ9AdLqB6y+mv+cabn1vyj0y OpP1ee6joe1Z3koP+DzC1H1ux0h/dh6llDkuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2Ku xV2KuxV2KuxV2KuxV2KqN9cC2sri5JAEMbyVbZfgUnf22whBOz85c27oX6EeTbcW3lDQ7cUpDp9r HsKD4YFGw+jNTPmXeYx6R7k4yLN2Kvif/nIm29D84NeoKLL9VlXeteVpFyP/AAVc2WnPoDp9UP3h e5/84o3Bl/LO5Sp/capPGK9N4YZNvb48xtV9Tm6I+j4vZcxnLdirsVdirsVdirsVdirsVdirsVdi rsVdirsVdirsVdirsVdirsVdirsVdirsVSXztc/VfJmv3VQPQ067lqdwOEDtvT5ZKA9QYZDUT7n5 9KrMwVQSxNABuSTm2dG/Ru2hEFvFCDyESKnLpXiKVzTu/CpirsVfHf8AzlFbej+akslB/pFlbS7d dg0e/wDyLzYaY+h1WsHrelf84iXAbynrlv3jv1krX/fkKjp/zzynVcw5GhPpL3rMVzXYq7FXYq7F XYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FWJfm5c/Vvyx80SVpy024iqBX+9 Qx0+nllmIeoNWc+g+58OeXbb615g0y2oT693BFRevxyKu1fnmzkdnTRFkP0QzUO+dirsVfJ3/OW1 uF8/6XOKfvdKjUgDulxNuT8mzP0v0/F1mtHqHuZH/wA4e3IMfmq2JAINjIo7monVvuoMhq+jZoTz fR2YbnuxV2KuxV2KuxV2KqN5fWVlCZ724itoAaGWZ1jSp6DkxAwgWgkDmqxyJIiyRsHRwGR1NQQd wQRgS3irsVdirsVQ9pqGn3okNncxXIibhKYXWTiw/ZbiTQ4SKQCCiMCXYq7FXYqh5NS06O8jsZLq FL2UForVpFErKOpVCeRH0YaKLHJEYEuxV2KuxVRu72zsoDcXk8dtAtA0szrGgr0qzEDCBaCaVY5E kRZI2Do4DI6moIO4IIwJef8A5/3Jt/yg8xSAkco4I9uv725ij/423y3B9YaNSf3ZfIn5a231n8xP LEBHJX1Wz5itPhE6Fv8AhRmwyH0n3OqxC5j3vvzNU7x2KuxV8x/85f25XWPLdxvSS3uY+m37t0PX /npmbpORddrhuFL/AJxCuePmLzBa13ls4peNOvpyla1/56YdWNgjQncvqHMF2TsVdirsVdirTMqq WYgKBUk7AAYq8Z/Mr/nJby15e9bTvLQTW9YWqmYE/U4m/wAp13lI8ENP8oZk49OTudg4mXViOw3L 5i82+dfM3m3UjqGvX0l5MKiJD8MUSn9mKMUVB8hv3zNhARGzrp5JSNl9Mf8AOJ+o31z5Bv7a4maW Gy1Bo7VHNRGjRRuUWvReTE08TmFqh6nYaInh+L2zMZzHYqgdb1zSNC0ufVNXuo7Owtl5SzyGgHgB 3LHoANyemGMSTQYykIiy+Svzg/P7V/ODy6Rohk07y0CVZa8Z7oeMpH2U8Ix9Ne2fiwCO55usz6kz 2HJCf841anfWv5taXawSslvqEd1Ddxg/C6JbSTKCPZ41OHUD0MdISMgfZ2a527sVdirwb84v+cjr TR/W0LydKl1qoql1qoo8NuehWLqJJPf7K+56ZWLT3vJws+qraPN8wzapqU2otqUt1LJqLSes14zs ZTJWvPmTy5V75m0OTrrN2/QTyte3F/5Y0i+uW5XF3ZW88zAUq8kSsxp8zmqkKJd5A3EFM8iydirC fzN/Nny15B071L5/rWqzKWstKiYCWTsGc7+nHX9oj5AnbLceIzac2YQG/N8c+e/zB8zedtXOo63c cwtRa2cdVggQn7MaVP0sfiPc5sIYxEUHVZMpmbL6Q/5xP1G+ufIN/bXEzSw2WoNHao5qI0aKNyi1 6LyYmnicw9UPU5+iJ4fim/8Azk1cGL8pr5P9/wBzax9adJQ/0/YyOm+tnqz6HzZ+SNt9Z/Nfy1HQ HjdiX4un7pGk/wCNdszMx9Bdfpx6w+6M1juXYq7FXzv/AM5g23Kw8r3ND+6lvI69v3iwt/zLzL0n VwNcNgxL/nE259P8xb+Ek8Z9KmAA/mWeBgT9Fcs1Q9PxatEfX8H1rmA7R2KuxV2KsN/MD82vJvke 3P6VuvV1Fl5QaXb0e4evQla0RT/M9PauWY8UpcmnLnjDm+V/zI/PTzl52Mlo0n6L0NiQNMtmNHX/ AIvk2aX5bL/k5nY8Ij73W5dRKfkGM+TvIXmrzhqH1LQbF7llI9a4PwwRA95JT8K/LqewOTnMR5te PHKZoIn8yPIk/kfzGNCuLtby4S3inmljUqgaUElVqakL4mlfAY458QtOXHwGn0F/ziN/yhWs/wDb SP8AyYjzE1X1BztF9J973XMVzWLfmD+ZPlnyNpX17WJqzyAizsI6Gedh2Veyj9pjsPuGWY8Zkdmr LlEBZfHH5j/ml5m8+an9Z1OT0bCJibLTIifRhB2r/lvTq5+ig2zYY8QiNnVZcxmd0qPk3zCvlVvN Utq0Oi+ulrFcyfD6sjhj+6B3YLwNW6duuS4xddWHhnh4ujLf+cdP/JyeX/8Ao8/6gZ8r1H0Ft0v9 4Px0fbGa13CH1HUrDTLGe/1C4jtbK2UyT3ErBURR3JOEC0EgCy+Vfzj/AOciL/zEZ9C8rPJZaCax 3F5uk90OhA7xxHw+0w60+zmdh09bnm63PqjLaPJ5T5W8o+YPNGo/UNFtWuZlUyTP0jijXcvI52VR +PQVOXymIjdxYQMjQSfJMX6C+Rv+UK8v/wDbNs/+TCZqZ/UXeY/pHuTvIs3jX5xf85CaZ5VE+ieX Wjv/ADGKxzS/at7Q9Dzp9uUfydAftdOJyMWAy3PJxM+qEdhzfKWoahrOvavJeXs02o6pfSDnI1ZJ ZHbZVAH3Ko+QzPAADrCTI780T5n8q635Y1CPTtZg+rXzwR3DW5ILIsoJUPTYNTqO3zwRkJbhM4GJ ovpT/nEb/lCtZ/7aR/5MR5h6r6g7DRfSfejP+csbgR/lxZRAjlNqsK0PXisE7Ej6QMGl+r4J1p9H xeJ/84424l/ODRGNKQrdyUIrX/RJVH3Fq5k6j6C4mlH7wPtXNa7d2KuxV4V/zlzbcvJOj3PH+61I Rcq9PUgkalPf08ytL9RcLWj0j3vK/wDnGO4MX5sWkYr/AKRa3UZoaDaP1N/+Ay/U/Q42kPrfZOa5 2zsVS/XfMGiaBp0mpazexWNlF9qaZuIr2VR1Zj2VdzhjEk0GMpCIsvm78yv+co9SvvV03yVG1haG qvq0wH1hx0PpRmqxg/zGrf6pzNx6YDeTr8usJ2i8LRNW1nUgqLPqOp3j7Ac555ZG/wCCdmOZOwDh 7k+b3v8ALX/nFq6uPS1LzxIbeA0ZdGgb96w6/v5V2T/VTf8Aygcxcmp6Rc3Fo+sn0bo2iaRounxa dpNnFY2MIpHbwKEUeJ26k9ydzmGZE7l2EYgCg+Rv+coP/Jqz/wDMHbf8RObDTfQ6rWfW9R/5xG/5 QrWf+2kf+TEeUar6g5Oi+k+9kX5u/nvonkmKTTdO4aj5mZfhtQaxW9Rs1wV79wg3PsN8hiwGW55N mfUiGw5vkXzB5i1zzLq8uqaxdSX2oXBAMj77fsoijZVHZVFM2EYgCg6uUjI2XuX5Of8AON0t4INf 87QtFa7SWuiNVXkHUNc91X/I6n9qnQ4ubUdIuZg0l7yZr/zlJBBb/lXbQQRrFBFqFskUSAKiqsUo Cqo2AAyvTfW3awej4vDf+cdP/JyeX/8Ao8/6gZ8ydR9BcLS/3g/HR9c+dfPXlvybo7aprlyIYtxB AtGmmcCvCJKjkfwHcjMCEDI0Ha5MggLL47/NH84PMnn6+43DGz0SF+VnpUbEoOweU7epJTudh2Az YYsQh73U5s5mfJd+Vn5OeYvPt6JIgbLQoWpd6pIvw7dUhXb1H/Adz0BcuYR964cBmfJ9deX/ACR5 d8neVZ9K0O2EEIhczTHeWZ+BBklfqzfgOgoM18pmRsu1jjEI0HwNm1dI/QHyfcW9t5C0O4uZUht4 dLtZJppGCIiLboWZmNAAB1JzVT+o+93kD6R7ngH5xf8AOSM9/wCtoPkmZoLLdLrWlqksvYrb9Cif 5f2j2oNzlYtPW8nBz6u9ovEfLnlrXfMurw6Voto95fTnZE6KO7ux+FVHdjtmTKQiLLhwgZGg+vPy j/IvQ/I8Sahe8NR8yuvx3hFY4KjdLcN08C5+I+w2zAy5jLbo7TBpxDc83hP/ADlB/wCTVn/5g7b/ AIicytN9Dhaz63qP/OI3/KFaz/20j/yYjyjVfUHJ0X0n3of/AJy8uePlrQLao/e3ssnHufTi41/5 KY6XmUa47B55/wA4sW5l/NEvv+40+4kNB4tGm/8AweXan6WjRj1/B9gZr3auxV2KvHv+cqLb1fyv WSgP1fUbeTfqKpJHt7/HmRpvqcTWD0fF4H/zj9ceh+b/AJdf+Z7iPc0/vLWVP+Nsy8/0FwtMf3gf buax3DsVfn95z88eY/OGryanrV287FmNvb1PpQIxqI4k6KB9575toQERQdHkyGZssu/LX8g/OHnM xXsyHSNBejfpC4U8pF/4oi2L/wCsaL79sryZxH3tuLTSnvyD6m8hflb5P8j2np6NaA3jrxuNSno9 zJ41eg4r/koAPbMGeUy5uyx4Yw5Mtyttdir45/5yg/8AJqz/APMHbf8AETmx030Op1n1pF5R/N7X fKPkm/8AL2hKLe91G6aeXU61eKMxInGJezkqfiPTtvuJTxCUrLCGcxjQYjpumazr+rR2VhBLqGqX sh4xrV5HdjVmYn72Yn3OWEgBqAMjQ5vq/wDJ7/nH7S/KQh1nXxHqHmOgaNftQWh/4rr9uQfznp+z 4nAy5zLYcnZ4NMI7nm9izHct45/zlX/5LGL/ALaVv/yblzI0v1OJrPo+L5k/L3zg/k7zdZeY0thd yWK3Hp27NxVnmt5IV5EA7K0lTmbkhxCnXYp8ErQ/m7zj5h826xJq2uXTXN0+yL0jiStRHEnRVH9p 3wwgIigieQyNl6v+Tv8Azjpfa/6Ou+bEkstENHt7DdJ7odQW6GOI/wDBN2oKHKMuorYc3KwaUy3l yfVFhp9jp1lDY2MEdrZ26iOC3iUIiKOgVRsMwSbdkABsFup/8c27/wCMMn/ETiOank/OjNu6Fnfn j83/ADJ5o0bTvL6sbHQdOtre3FlExrO0Eap6k7bcqstVX7K7dSK5VDEIm+rdkzmQA6If8tfyr8y+ fdT9DTo/Q06FgL3VJQfRiHgP53p0QfTQb4cmURG6MWEzOz7G8gflz5a8j6QNP0aD964BvL6Shnnc d3bwHZRsPvzXZMhkd3bYsQgKDJ8g2Pjn/nKD/wAmrP8A8wdt/wARObHTfQ6nWfWm35DfnL5R8i+X NQ07W0u2uLq8+sRm2iWReHpIm5Z03quRz4TI2GemzxgCCl//ADkB+bPlvz7HoUehLcomnm6a6FzG sdTKIhHx4s9acGrhwYjG7Y6nMJ1SU/kP+YHl3yN5pvtW1tbhop7FrSEWyLIeTzRyGoZk7ReOSz4z IUGOmyiErL3P/oav8sf99al/0jx/9VcxfysnM/OQ83f9DV/lj/vrUv8ApHj/AOquP5WS/nIebv8A oav8sf8AfWpf9I8f/VXH8rJfzkPNhX5w/nz5E84eQr7Q9LS9W/mkgkhM8KKn7uZWarCRiPhB7Zbi wSjKy059TGcaDxj8vvMFr5d87aNrd2Ga1sLpJbgIOT+mNm4iq1NDtvmRkjcSHExS4ZAvpz/oav8A LH/fWpf9I8f/AFVzC/Kydj+ch5o/Q/8AnJX8stW1S305ZbuzkuXEcU93CqRc2NFDOrvxqT1Ip4nB LTyAtlHVwJp8Z5sXUv0F8jf8oV5f/wC2bZ/8mEzUz+ou8x/SPcneRZuxV2Kvjv8A5yiR1/NSUspA eytmQnuKMKj6Qc2Gm+h1Ws+thPkL8u/MvnfVxp+jQVRCDd3slRBAh/akbx8FG5y2eQRG7TjxGZoP sb8tPyp8teQtN9HT0+salMoF7qkoHqynrxXrwjr0UfTU75rsmUyLtcWEQG3NmmVtzsVeO/8AOVKs fywjIBIXUbcsR2HCUVP0nMjTfU4ms+j4vkiysby/u4rOyge5u52CQwRKXd2PQKo3ObAmnVgXyfUn 5Of8452eh+hr3m+NLvWRSS2000eC2PUNJ+zJIP8AgV7VNDmDm1F7Dk7LBpa3lze65iua7FVG+jeW yuIkFXeJ1UdKkqQOuEIPJ+cpBBIIoRsQc27oXsH5Pf8AOP8Aqvm4xazrok07y3UNGKcZ7oeEQP2Y /wDLP+xr1GPlziOw5uVg0xlueT6z0bRdK0XTYNM0q1js7C2XjDbxCigePiSepJ3J65gEkmy7SMQB QRuBLsVfPv8AzkD+SXm7zR5lh8xeWoUvjLAlvdWZkjhkRoieLq0rIhUqaUrUU712y8GYRFFwdTp5 SNh5T/0Lp+cn/Uv/APT5Y/8AVfL/AMxDvcX8rk7vud/0Lp+cn/Uv/wDT5Y/9V8fzEO9fyuTu+53/ AELp+cn/AFL/AP0+WP8A1Xx/MQ71/K5O77nf9C6fnJ/1L/8A0+WP/VfH8xDvX8rk7vud/wBC6fnJ /wBS/wD9Plj/ANV8fzEO9fyuTu+53/Qun5yf9S//ANPlj/1Xx/MQ71/K5O77nf8AQun5yf8AUv8A /T5Y/wDVfH8xDvX8rk7vud/0Lp+cn/Uv/wDT5Y/9V8fzEO9fyuTu+5QvvyB/Nuwsri+utC9O1tYn nnk+t2bcY41LM1FmJNAOwwjPA9VOmyAXTz7LWh2Kv0F8jf8AKFeX/wDtm2f/ACYTNTP6i7zH9I9y d5Fm7FXYqxjzn+Wvkvzl9XPmHTlu5bWognV5IpFUmpTnEyMV9jk4ZJR5NeTFGfMJtoHlzQ/L2nJp ui2UVhZISRDCKAserMTVmY+LGuRlIk2WUYCIoJjgZOxV2KoLWtF0rW9MuNL1a2S80+6XjPbyCqsA QR03BBAII3BwgkGwiUQRRSHyh+VnkLyjO1zoOkx2124Km6dnmmCsd1V5WcqP9XJzyylzLXDDGPIM ryttdirsVdirB5/yT/LC48wSa9PoUMl/K/qyKzSeg0hNS5g5ekSe/wAND4Vy3xpVVtJ08Lumbqqq oVQAoFABsABlTc3irsVdirsVdirsVdirsVdirsVdirsVSTzz/wAoV5g/7Zt5/wAmHyUPqDDJ9J9z 8+s2zo3Yq/QXyN/yhXl//tm2f/JhM1M/qLvMf0j3J3kWbsVdirsVdirsVdirsVdirsVdirsVdirs VdirsVdirsVdirsVdirsVdirsVdirsVdirsVSTzz/wAoV5g/7Zt5/wAmHyUPqDDJ9J9z8+s2zo3Y q/QXyN/yhXl//tm2f/JhM1M/qLvMf0j3J3kWbsVdirsVdirsVdirsVdirsVdirsVdirsVdirsVdi rsVdirsVdirsVdirsVdirsVdirsVSTzz/wAoV5g/7Zt5/wAmHyUPqDDJ9J9z8+s2zo3Yq/QXyN/y hXl//tm2f/JhM1M/qLvMf0j3J3kWbsVdirsVdirsVdirsVdirsVdirsVdirsVdir5685/wDOVjaZ 5gvNN0LRo7u1spXga8uZWUyvGeLMiKPhWo2qan2zLhpbFkuBk1tGgEi/6G98x/8AUv2f/I2XJ/lB 3sPzx7nf9De+Y/8AqX7P/kbLj+UHev549zv+hvfMf/Uv2f8AyNlx/KDvX88e5sf85e+Yqivl+zI7 gTSj+GP5Qd6/nj3Pcfyu/MjT/P8A5a/S9rbtZzwym3vbR25+nKqhvhei8lKsCDQZi5cfAac3DlEx bMMrbXYq7FXYq7FXYq7FUk88/wDKFeYP+2bef8mHyUPqDDJ9J9z8+s2zo3Yq/QXyN/yhXl//ALZt n/yYTNTP6i7zH9I9yd5Fm8g/MX/nI/QPJ/mOXQYdNl1W6tQBeSJKsMcbsAwQEq5YgH4ttsyMenMh bi5dUIGqti//AEOBp3/UsTf9Ja/9Usn+UPe1fnh3O/6HA07/AKlib/pLX/qlj+UPev54dz1/8ufz C0bz35dXWdMV4eEhgu7WWnOKZQGKkjZgQwKsOvzqMx8mMxNFy8WUTFhLfzU/NvRPy8sbSS9t5L2+ vy4tLKIhKrHx5u7moVRzHYkn6aSxYjNjmzjGN3mX/Q4Gnf8AUsTf9Ja/9Usu/KHvcb88O53/AEOB p3/UsTf9Ja/9Usfyh71/PDuZ3+Vf566D5/1C40tLKXTNThjM8cEjrKksSkBijgL8SlhVSOnTvSrL gMN2/DqRM1yLNfNvmnS/Kvl2917VGYWdkgZ1QAu7MQqIgJALMzADfK4RMjQbZzERZeIH/nMDTamn lmYjsTdoP+ZWZP5Q97h/nh3Nf9Dgad/1LE3/AElr/wBUsfyh71/PDuTfyp/zlR5d1nXrTSr7SJtM jvZFhjvDMsyLI54pzARCFJNOXb5ZGWmIF2zhrATRFPcMxnMdir88fMv/ACkeq/8AMZcf8nWzbx5B 0M+ZeseV/wDnGDXvMHl3Ttbh1u1gi1G3juUheOQsokXkASNtsx5akA1TlQ0ZkAbTT/oULzH/ANTB Z/8AIqXB+bHcy/Invd/0KF5j/wCpgs/+RUuP5sdy/kT3vKPzG8iXfkfzK+g3V1HeTJFHMZolZVpI KgUbfbL8c+IW42XHwGn0J/ziN/yhWs/9tI/8mI8xNV9Qc7RfSfe91zFc12KuxV2KuxV2KuxVJPPP /KFeYP8Atm3n/Jh8lD6gwyfSfc/PrNs6N2Kv0F8jf8oV5f8A+2bZ/wDJhM1M/qLvMf0j3J3kWb4V /Ov/AMmr5l/5jG/4iubTD9AdLqPrKceR/wDnH3zn5y8uQa/pd7p0NncNIiR3Ms6ygxOUaoSGReq7 fFkZ54xNFnj00pixTE/PnkbVvJPmB9C1WW3mu0jSYvas7x8ZBUbyJG1foycJiQsNWTGYGi+if+cR v+UK1n/tpH/kxHmJqvqDn6L6T72Jf85e/wDKR+X/APmDl/5O5ZpORatdzDzD8uPyw1/z/e3lno1x aW8tlEs0pvHkRSrNxHH045TWvjl2TIIc3HxYTM7Jj+Yv5J+avIOl22paxdWNxBdT/V41s5JncPwZ 6sJIohSi+ODHmEzQZZdPKAsp1/zi/wD+TVg/5g7n/iIyOp+hlo/re6/85K/+Si1T/jNa/wDUQmYu n+tzdX/dl8ieV/Lt75k8wWOhWLxR3eoSiGF5yyxhiCfiKq7U27A5nylQt1cImRoPR/MX/OM3nzQd Cv8AWry/0uS106B7idIZbgyFIxyIUNbotfmRlMdTEmt2+WklEXs828tf8pHpX/MZb/8AJ1cvlyLj w5h+h2ah3zsVfnj5l/5SPVf+Yy4/5Otm3jyDoZ8y+4fyk/8AJY+V/wDtm23/ACbGazL9Rdzg+ge5 luVtrsVfHP8AzlB/5NWf/mDtv+InNjpvodTrPreo/wDOI3/KFaz/ANtI/wDJiPKNV9QcnRfSfe91 zFc12KuxV2KuxV2KuxVJPPP/AChXmD/tm3n/ACYfJQ+oMMn0n3Pz6zbOjdir9BfI3/KFeX/+2bZ/ 8mEzUz+ou8x/SPcneRZvhX86/wDyavmX/mMb/iK5tMP0B0uo+svpn/nGr/yUWl/8Zrr/AKiHzC1H 1ux0n92HhX/OUH/k1Z/+YO2/4icytN9Dhaz63qP/ADiN/wAoVrP/AG0j/wAmI8o1X1BydF9J97Ev +cvf+Uj8v/8AMHL/AMncs0nItWu5h3/OIX/KR+YP+YOL/k7jq+QXQ8yy3/nLn/lCtG/7aQ/5MSZX pfqLbrfpHveXf84v/wDk1YP+YO5/4iMv1P0ONo/re6/85K/+Si1T/jNa/wDUQmYun+tzdX/dl8zf kp/5NXy1/wAxi/8AEWzNzfQXXaf6w+vfzb/8lj5o/wC2bc/8mzmvxfUHa5/oPufD3lr/AJSPSv8A mMt/+Tq5s5ci6aHMP0OzUO+dir88fMv/ACkeq/8AMZcf8nWzbx5B0M+ZfcP5Sf8AksfK/wD2zbb/ AJNjNZl+ou5wfQPcy3K212Kvjn/nKD/yas//ADB23/ETmx030Op1n1vUf+cRv+UK1n/tpH/kxHlG q+oOTovpPve65iua7FXYq7FXYq7FXYqknnn/AJQrzB/2zbz/AJMPkofUGGT6T7n59ZtnRuxV+gvk b/lCvL//AGzbP/kwmamf1F3mP6R7k7yLN8K/nX/5NXzL/wAxjf8AEVzaYfoDpdR9Zev/AJKfnX+X nlb8vLHRdavpINQgkuGkjW3mkAEkzOvxIpHQ5j5sMpSsOXp9RCMKLyv88/N+hebPPsusaJM09g9t BEsjo0Z5ICGHFwDl+GBjGi42omJSsPav+cRv+UK1n/tpH/kxHmNqvqDl6L6T72Jf85e/8pH5f/5g 5f8Ak7lmk5Fq13MMb/5x3/MHyt5L1nV7rzBcvbQ3dtHFAyRPLVlk5EUQNTbJ6jGZAU16XLGBNsh/ 5yF/NnyR5z8s6bYeX7yS5ube99eVXhliAT0nStXVR1YZDBilE7tmqzRmAAx7/nF//wAmrB/zB3P/ ABEZPU/Q16P63uv/ADkr/wCSi1T/AIzWv/UQmYun+tzdX/dl8r/llrmnaF590TWNSkMVhZXIluJF UuQoBFQqgk9czskSYkB1uGQjIEvoj8wfz+/LHWfI+u6Tp+oyyXt9ZTQW0Ztp1DO6EKCzKAN/HMPH gkJAufl1MDEgF8xeWv8AlI9K/wCYy3/5OrmdLkXWw5h+h2ah3zsVfnj5l/5SPVf+Yy4/5Otm3jyD oZ8y+4fyk/8AJY+V/wDtm23/ACbGazL9Rdzg+ge5luVtrsVfHP8AzlB/5NWf/mDtv+InNjpvodTr Preo/wDOI3/KFaz/ANtI/wDJiPKNV9QcnRfSfe91zFc12KuxV2KuxV2KuxVJPPP/AChXmD/tm3n/ ACYfJQ+oMMn0n3Pz6zbOjdir9BfI3/KFeX/+2bZ/8mEzUz+ou8x/SPcneRZvlH86vyV8/XXn7UtY 0fTZNU07VJBPFLAVLIxUB45EJDCjDY9CPeoGfhzR4aLrNRp5GRIF2wP/AJUp+av/AFLV5/wK/wDN WW+NDvaPy8+53/KlPzV/6lq8/wCBX/mrHxod6/l59z6b/wCcfPIGueTfJk9vraLDqGoXTXTWoYOY k9NI1V2UleR4VND+OYWeYlLZ2OlxGEd2O/8AOSn5XeZvNa6Vq/l+3N9PYLJBdWasokKOQyOgYgNQ ghhWvT3yWnyCNgsNXhMqIeDf8qU/NX/qWrz/AIFf+asy/Gh3uD+Xn3O/5Up+av8A1LV5/wACv/NW PjQ71/Lz7nrf/OOn5Q+ctD81y+Y9fs20y3gt5ILeCUr6sskpAJ4qWoiqDuab0p3zH1GUEUHK0uCQ lZ2eu/m/5Pv/ADd+X+p6Jp7Kt/KI5bYOQFZ4ZFk4EnpyC0B8cx8U+GVly88DKBAfJD/kl+ayOyHy 1dkqSCQEYbeBDEH6Mz/Gh3ur/Lz7mv8AlSn5q/8AUtXn/Ar/AM1YfGh3o/Lz7k+8i/kP+ZV15q00 32kS6bYwXEU91d3JRVWONwzcRWrMaUAA/DfITzxrm2Y9NMyFh9mZrnbOxV+ePmX/AJSPVf8AmMuP +TrZt48g6GfMvuH8pP8AyWPlf/tm23/JsZrMv1F3OD6B7mW5W2uxV8c/85Qf+TVn/wCYO2/4ic2O m+h1Os+t6j/ziN/yhWs/9tI/8mI8o1X1BydF9J973XMVzXYq7FXYq7FXYq7FUk88/wDKFeYP+2be f8mHyUPqDDJ9J9z8+s2zo3Yq/QXyN/yhXl//ALZtn/yYTNTP6i7zH9I9yd5Fm7FXYq7FXYq7FXYq 7FXYq7FXYq7FXYq7FXYq/PHzL/ykeq/8xlx/ydbNvHkHQz5l9w/lJ/5LHyv/ANs22/5NjNZl+ou5 wfQPcy3K212Kvjn/AJyg/wDJqz/8wdt/xE5sdN9DqdZ9b1H/AJxG/wCUK1n/ALaR/wCTEeUar6g5 Oi+k+97rmK5rsVdirsVdirsVdiqSeef+UK8wf9s28/5MPkofUGGT6T7n59ZtnRuxV92eTPOfk+Hy foUM2u6fHLHp9okkb3cCsrLAgKsC9QQc1c4Gzs7nHkjwjcck5/xz5K/6mDTf+kyD/mvI8Eu5n4ke 8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mv Hgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDT f+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/x z5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3 L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+ky D/mvHgl3L4ke8PgrzFIknmDU5I2Do93OyOpqCDIxBBGbWPJ0kuZfZn5W+cPKVr+XHlu3udbsILiL T7dJYZLqFHVhGAQyswIIzXZYHiOzt8M48A36Mp/xz5K/6mDTf+kyD/mvK+CXc2eJHvDv8c+Sv+pg 03/pMg/5rx4Jdy+JHvD5L/5yR1LTtR/M2e50+6hvLc2luomt5FlSoU1HJCRtmfpwRF1erIM9npX/ ADix5i8v6Z5P1aHUtTtLGV9QLpHczxxMV9CMVAdlJFRlOpiSRTkaOQETZ6vav8c+Sv8AqYNN/wCk yD/mvMbgl3OZ4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz 5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8O/xz5K/6mDTf+kyD/mvHgl3L 4ke8O/xz5K/6mDTf+kyD/mvHgl3L4ke8JN5z85+T5vJ+uww67p8ksmn3aRxpdwMzM0DgKoD1JJyU IGxswyZI8J3HJ8J5tHTI7W9E1TQ9UuNL1S3e1vrVzHLFICDUGlRXqp6gjYjBGQIsJlEg0UDhQ7FX Yq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FUdoeh6p rmqW+l6XbvdX104SKJASak0qadFHUk7AYJSAFlMYkmg//9k= xmp.iid:13ce8210-bab1-324c-a0a8-49f0843b02ac xmp.did:13ce8210-bab1-324c-a0a8-49f0843b02ac uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf xmp.iid:69654b91-9ab1-164c-a3b9-98f4ef31f311 xmp.did:69654b91-9ab1-164c-a3b9-98f4ef31f311 uuid:5D20892493BFDB11914A8590D31508C8 proof:pdf saved xmp.iid:63732901-c533-de45-8841-f4f7dd2a5056 2018-12-05T14:11:02+05:30 Adobe Illustrator CC 2015 (Windows) / saved xmp.iid:13ce8210-bab1-324c-a0a8-49f0843b02ac 2018-12-05T14:17:02+05:30 Adobe Illustrator CC 2015 (Windows) / Print False False 1 200.000000 200.001705 Points Cyan Magenta Yellow Black Default Swatch Group 0 White RGB PROCESS 255 255 255 Black RGB PROCESS 35 31 32 CMYK Red RGB PROCESS 236 28 36 CMYK Yellow RGB PROCESS 255 241 0 CMYK Green RGB PROCESS 0 165 81 CMYK Cyan RGB PROCESS 0 173 238 CMYK Blue RGB PROCESS 46 49 145 CMYK Magenta RGB PROCESS 235 0 139 C=15 M=100 Y=90 K=10 RGB PROCESS 190 30 45 C=0 M=90 Y=85 K=0 RGB PROCESS 238 64 54 C=0 M=80 Y=95 K=0 RGB PROCESS 240 90 40 C=0 M=50 Y=100 K=0 RGB PROCESS 246 146 30 C=0 M=35 Y=85 K=0 RGB PROCESS 250 175 64 C=5 M=0 Y=90 K=0 RGB PROCESS 249 236 49 C=20 M=0 Y=100 K=0 RGB PROCESS 214 222 35 C=50 M=0 Y=100 K=0 RGB PROCESS 139 197 63 C=75 M=0 Y=100 K=0 RGB PROCESS 55 179 74 C=85 M=10 Y=100 K=10 RGB PROCESS 0 147 69 C=90 M=30 Y=95 K=30 RGB PROCESS 0 104 56 C=75 M=0 Y=75 K=0 RGB PROCESS 41 180 115 C=80 M=10 Y=45 K=0 RGB PROCESS 0 166 156 C=70 M=15 Y=0 K=0 RGB PROCESS 38 169 224 C=85 M=50 Y=0 K=0 RGB PROCESS 27 117 187 C=100 M=95 Y=5 K=0 RGB PROCESS 43 56 143 C=100 M=100 Y=25 K=25 RGB PROCESS 38 34 97 C=75 M=100 Y=0 K=0 RGB PROCESS 101 45 144 C=50 M=100 Y=0 K=0 RGB PROCESS 144 39 142 C=35 M=100 Y=35 K=10 RGB PROCESS 158 31 99 C=10 M=100 Y=50 K=0 RGB PROCESS 217 28 92 C=0 M=95 Y=20 K=0 RGB PROCESS 236 41 123 C=25 M=25 Y=40 K=0 RGB PROCESS 193 180 154 C=40 M=45 Y=50 K=5 RGB PROCESS 154 132 121 C=50 M=50 Y=60 K=25 RGB PROCESS 113 101 88 C=55 M=60 Y=65 K=40 RGB PROCESS 90 74 66 C=25 M=40 Y=65 K=0 RGB PROCESS 195 153 107 C=30 M=50 Y=75 K=10 RGB PROCESS 168 124 79 C=35 M=60 Y=80 K=25 RGB PROCESS 138 93 59 C=40 M=65 Y=90 K=35 RGB PROCESS 117 76 40 C=40 M=70 Y=100 K=50 RGB PROCESS 96 56 19 C=50 M=70 Y=80 K=70 RGB PROCESS 59 35 20 Grays 1 C=0 M=0 Y=0 K=100 RGB PROCESS 35 31 32 C=0 M=0 Y=0 K=90 RGB PROCESS 64 64 65 C=0 M=0 Y=0 K=80 RGB PROCESS 88 89 91 C=0 M=0 Y=0 K=70 RGB PROCESS 109 110 112 C=0 M=0 Y=0 K=60 RGB PROCESS 128 129 132 C=0 M=0 Y=0 K=50 RGB PROCESS 146 148 151 C=0 M=0 Y=0 K=40 RGB PROCESS 166 168 171 C=0 M=0 Y=0 K=30 RGB PROCESS 187 189 191 C=0 M=0 Y=0 K=20 RGB PROCESS 208 210 211 C=0 M=0 Y=0 K=10 RGB PROCESS 230 231 232 C=0 M=0 Y=0 K=5 RGB PROCESS 241 241 242 Brights 1 C=0 M=100 Y=100 K=0 RGB PROCESS 236 28 36 C=0 M=75 Y=100 K=0 RGB PROCESS 241 101 34 C=0 M=10 Y=95 K=0 RGB PROCESS 255 221 21 C=85 M=10 Y=100 K=0 RGB PROCESS 0 161 75 C=100 M=90 Y=0 K=0 RGB PROCESS 34 64 153 C=60 M=90 Y=0 K=0 RGB PROCESS 127 63 151 Adobe PDF library 10.01 Manufacturing
    IoT & AI Based Software for CNC Machines
    SEE ALL